42 research outputs found

    Desing of plasmomic nano-structures for SERS ultrasensitive spectroscopy: comparison between self-assembly and bioconjugation

    Get PDF
    En este trabajo, se presenta una estrategia sencilla para generar nanoestructuras plasmónicas por autoensamblado y bioconjugación de nanoesferas (NSs) de Au, para ser aplicadas como plataformas de espectroscopia Raman incrementada por superficie (SERS). Mediante el reconocimiento molecular altamente específico entre biotina y estreptavidina (STV) se generan dímeros con una distancia interpartícula de alrededor de 8 nm, mientras que en ausencia de STV la agregación no direccionada de la superficie de las NSs genera aglomerados compactos con distancia interpartícula de 5 nm debido a los puente hidrógeno que se establecen entre moléculas de biotina funcionalizadas. Ambos sustratos permiten detectar concentraciones de biotina picomolares (1x10-12 M). Sin embargo, los factores de incremento analíticos (AEF) son un orden de magnitud mayor en el caso de los dímeros (107) que en el caso de los aglomerados compactos (106). Utilizando los grandes incrementos de campo eléctrico se utilizaron estos sustratos para detectar un analito externo, Rodamina 6G (RH6G), y se determino que los dímeros generan incrementos de un orden de magnitud mayor (105) que el uso de aglomerados compactos (104). La dependencia de la longitud de onda y las diferencias en los AEF para los sustratos diméricos y los aglomerados compactos de NSs de Au se correlacionaron con simulaciones electrodinámicas rigurosas. Los dímeros generados son en sí un nuevo tipo de un sustrato SERS que puede ser autocalibrado donde selectivamente se puede “atrapar” moléculas biotiniladas por STV y situándolas en la zona de máximo incremento de campo electromagnético. Por otra parte, el estudio de las propiedades ópticas de los aglomerados compactos permitió el desarrollo de un procedimiento general para hacer una predicción cuantitativa de la respuesta SERS de este tipo de nanoestructuras.In this work, we report a simple strategy to obtain ultrasensitive SERS nanostructures by self-assembly and bioconjugation of Au nanospheres (NSs). Homodimer aggregates with an interparticle gap of around 8 nm are generated in aqueous dispersions by the highly specific molecular recognition of biotinylated Au NSs to streptavidin (STV), while compact-tight Au NS aggregates with a gap of 5 nm are formed in the absence of STV due to hydrogen bonding among biotinylated NSs. Both types of aggregates depict the capability to detect biotin concentrations lower than 1x10-12 M. Nevertheless, it was found that dimers are better SERS substrates as they generate enhancements one order of magnitude bigger than the compact-tight aggregates (107 and 106, respectively). Quite interesting, the AEF for an external analyte, Rhodamine 6G (RH6G), using the dimer aggregates is also 1 order of magnitude greater (105) than using compact-tight aggregates (around 104). The dependence on the wavelength and the differences of the AEF for Au random aggregates and dimers are rationalized with rigorous electrodynamic simulations. The dimers obtained afford a new type of an in situ self-calibrated and reliable SERS substrate where biotinylated molecules can selectively be “trapped” by STV and located in the nanogap enhanced plasmonic field. On the other hand, the study of the optical properties of compact-tight aggregates allow to develop a general procedure to make a quantitative prediction of the SERS response tight-compact clusters that is demonstrated to be quite general independent of the metal (Ag or Au) and size of the individual NSs of the cluster.Fil: Fraire, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Coronado, Eduardo A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentin

    Distributed On-Demand Routing for LEO Mega-Constellations: A Starlink Case Study

    Full text link
    The design and launch of large-scale satellite networks create an imminent demand for efficient and delay-minimising routing methods. With the rising number of satellites in such constellations, pre-computing all shortest routes between all satellites and for all times becomes more and more infeasible due to space and time limitations. Even though distributed on-demand routing methods were developed for specific LEO satellite network configurations, they are not suited for increasingly popular mega-constellations based on Walker Delta formations. The contributions of this paper are twofold. First, we introduce a formal model that mathematically captures the time-evolving locations of satellites in a Walker Delta constellation and use it to establish a formula to compute the minimum number of ISL hops between two given satellites. In the second part, we present an on-demand hop-count-based routing algorithm that approximates the optimal path while achieving superior performance compared to classical shortest-path algorithms like Dijkstra.Comment: This is an extended version of a paper published in ASMS/SPSC 2022 containing proofs and further detail

    Experimental Evaluation of On-Board Contact-Graph Routing Solutions for Future Nano-Satellite Constellations

    Get PDF
    Hardware processing performance and storage capability for nanosatellites have increased notably in recent years. Unfortunately, this progress is not observed at the same pace in transmission data rate, mostly limited by available power in reduced and constrained platforms. Thus, space-to-ground data transfer becomes the operations bottleneck of most modern space applications. As channel rates are approaching the Shannon limit, alternative solutions to manage the data transmission are on the spot. Among these, networked nano-satellite constellations can cooperatively offload data to neighboring nodes via frequent inter-satellite links (ISL) opportunities in order to augment the overall volume and reduce the end-to-end data delivery delay. Nevertheless, the computation of efficient multi-hop routes needs to consider not only present satellite and ground segments as nodes, but a non-trivial time dynamic evolution of the system dictated by orbital dynamics. Moreover, the process should properly model and rely on considerable amount of available information from node’s configuration and network status obtained from recent telemetry. Also, in most practical cases, the forwarding decision shall happen in orbit, where satellites can timely react to local or in-transit traffic demands. In this context, it is appealing to investigate on the applicability of adequate algorithmic routing approaches running on state-of-the-art nanosatellite on-board computers. In this work, we present the first implementation of Contact Graph Routing (CGR) algorithm developed by the Jet Propulsion Laboratory (JPL, NASA) for a nanosatellite on-board computer. We describe CGR, including a Dijkstra adaptation operating at its core as well as protocol aspects depicted in CCSDS Schedule-Aware Bundle Routing (SABR) recommended standard. Based on JPL’s Interplanetary Overlay Network (ION) software stack, we build a strong baseline to develop the first CGR implementation for a nano-satellites. We make our code available to the public and adapt it to the GomSpace toolchain in order to compile it for the NanoMind A712C on-board flight hardware based on a 32-bit ARM7 RISC CPU processor. Next, we evaluate its performance in terms of CPU execution time (Tick counts) and memory resources for increasingly complex satellite networks. Obtained metrics serve as compelling evidence of the polynomial scalability of the approach, matching the predicted theoretical behavior. Furthermore, we are able to determine that the evaluated hardware and implementation can cope with satellite networks of more than 120 nodes and 1200 contact opportunities

    Empowering the Tracking Performance of LEO PNT by Means of Meta-Signals

    Get PDF
    Global Navigation Satellite Systems (GNSSs) are by far the most widespread technology for Position Navigation and Timing (PNT). They have been traditionally deployed exploiting Medium Earth Orbit (MEO) or Geostationary Earth Orbit (GEO) satellite constellations. To meet future demands and overcome MEO and GEO limitations, GNSSs based on Low Earth Orbit (LEO) constellations have been investigated as a radical system change. Although characterized by a higher Doppler effect, a PNT service supplied by means of LEO satellites can provide received signals that are about 30 dB stronger. Moreover, existing LEO constellations and the forthcoming mega-constellations, which are designed for broadband internet coverage, can be exploited to provide a piggybacked PNT service. With this cost-effective solution, a secondary PNT service might be subject to an economical use of resources, which may result in substantial bandwidth limitations. At the same time, the introduction of meta-signals in the GNSS literature has brought a new receiver signal processing strategy, particularly effective in terms of available bandwidth exploitation. It allows to increase the positioning accuracy exploiting a wideband processing approach, which might be challenging under severe Doppler conditions. A narrowband implementation of the meta-signal concept, namely Virtual Wideband (VWB) can tolerate harsh Doppler conditions while also reducing the processed bandwidth. It is thus more effective when addressing a secondary PNT service, where a limited frequency occupation might be an essential requirement. The aim of this work is to show the applicability of a VWB receiver architecture on signals provided by a piggybacked PNT service, hosted on a broadband LEO constellation. We demonstrate the capability of this implementation to bear high Doppler conditions while empowering the potential of LEO PNT

    Space-Terrestrial Integrated Internet of Things: Challenges and Opportunities

    Full text link
    Large geographical regions of our planet remain uncovered by terrestrial network connections. Sparse and dense constellations of near-Earth orbit satellites can bridge this gap by providing Internet of Things (IoT) connectivity on a world-wide scale in a flexible and cost-effective manner. This paper presents a novel space-terrestrial integrated IoT network architecture spanning direct- and indirect-to-satellite access from IoT assets on the surface. Framed on the identified requirements, we analyze NB-IoT and LoRa/LoRaWAN features to put these technologies forward as appealing candidates for future satellite IoT deployments. Finally, we list and discuss the key open research challenges to be addressed in order to achieve a successful space-terrestrial IoT integration

    COVID‑19 mitigation by digital contact tracing and contact prevention (app‑based social exposure warnings)

    Get PDF
    A plethora of measures are being combined in the attempt to reduce SARS-CoV-2 spread. Due to its sustainability, contact tracing is one of the most frequently applied interventions worldwide, albeit with mixed results. We evaluate the performance of digital contact tracing for different infection detection rates and response time delays. We also introduce and analyze a novel strategy we call contact prevention, which emits high exposure warnings to smartphone users according to Bluetooth-based contact counting. We model the effect of both strategies on transmission dynamics in SERIA, an agent-based simulation platform that implements population-dependent statistical distributions. Results show that contact prevention remains effective in scenarios with high diagnostic/response time delays and low infection detection rates, which greatly impair the effect of traditional contact tracing strategies. Contact prevention could play a significant role in pandemic mitigation, especially in developing countries where diagnostic and tracing capabilities are inadequate. Contact prevention could thus sustainably reduce the propagation of respiratory viruses while relying on available technology, respecting data privacy, and most importantly, promoting community-based awareness and social responsibility. Depending on infection detection and app adoption rates, applying a combination of digital contact tracing and contact prevention could reduce pandemic-related mortality by 20–56%.publishedVersionFil: Soldano, Germán J. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas; Argentina.Fil: Soldano, Germán J. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina.Fil: Fraire Juan A. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.Fil: Fraire Juan A. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Estudios Avanzados en ingeniería y Tecnología; Argentina.Fil: Fraire Juan A. Saarland University. Saarland Informatics Campus; Saarbrücken, Germany.Fil: Finochietto, Jorge M. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.Fil: Finochietto, Jorge M. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Estudios Avanzados en ingeniería y Tecnología; Argentina.Fil: Quiroga; Rodrigo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas; Argentina.Fil: Quiroga; Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina

    Sparse Satellite Constellation Design for LoRa-based Direct-to-Satellite Internet of Things

    Get PDF
    A global Internet of Things is possible by embracing constellations of satellites acting as orbiting gateways in a Directto- Satellite IoT (DtS-IoT). By removing the dependency on ground gateways, DtS-IoT enables a direct service on the regions illuminated by the passing-by satellite. After an in-depth overview of relevant experiments and candidate technologies, we discover that specific configurations of the Long-Range (LoRa) network protocol specification are particularly appealing to realize the DtS-IoT vision. Specifically, we profit from the maximum clock drift permitted on LoRa devices to propose the sparse satellite constellations concept. This approach significantly reduces the in-orbit DtS-IoT infrastructure at the expense of latency anyway present in resource-constrained IoT networks. We then introduce a novel algorithm comprising specific heuristics to design quasioptimal topologies for sparse IoT constellations. Obtained results show that LoRa-compatible DtS-IoT services can already be provided world-wide with 10% and 4% of the satellites required for a traditional dense constellation, in different configurations

    On the Automation, Optimization, and In-Orbit Validation of Intelligent Satellite Constellation Operations

    Get PDF
    Recent breakthroughs in technology have led to a thriving “new space” culture in low-Earth orbit (LEO) in which performance and cost considerations dominate over resilience and reliability as mission goals. These advances create a manifold of opportunities for new research and business models but come with a number of striking new challenges. In particular, the size and weight limitations of low-Earth orbit small satellites make their successful operation rest on a fine balance between solar power infeed and the power demands of the mission payload and supporting platform technologies, buffered by on-board battery storage. At the same time, these satellites are being rolled out as part of ever-larger constellations and mega-constellations. Altogether, this induces a number of challenging computational problems related to the recurring need to make decisions about which task each satellite is to effectuate next. Against this background, GOMSPACE and Saarland University have joined forces to develop highly sophisticated software-based automated solutions rooted in optimal algorithmic and self-improving learning techniques, all this validated in modern nanosatellite networked missions operating in orbit. The paper introduces the GOMSPACE Hands-Off Operations Platform (HOOP), an automated, flexible, and scalable end-to-end satellite operation framework for commanding and monitoring subsystems, single-satellites, or constellation-class missions. To this, the POWVER initiative at Saarland University has contributed state-of-the-art dynamic programming and learning techniques based on profound battery and electric power budget models. These models are continually kept accurate by extrapolating data from telemetry received from satellites. The resulting machine learning approach delivers optimal, efficient, scalable, usable, and robust flight plans, which are provisioned to the satellites with zero need for human intervention—but which are still under the full control of the mission operator. We report on insights gained while validating the integrated POWVER-HOOP approach in orbit on the dual-satellite mission GOMX–4 by GOMSPACE that is currently in orbit

    Delay-tolerant satellite networks

    No full text
    corecore